产品规格: | 12V200AH |
所属行业: | 能源 电池 铅酸蓄电池 |
包装说明: | 齐全 |
产品数量: | 54266.00 |
价格说明: | 价格:¥154.00 元/只 起 |
打印本页 添加收藏夹 点此询价 |
双登蓄电池厂家-双登蓄电池
基于混合动力(HEV)和插电式混合动力(PHEV)汽车的的技术需求,PHEV要真正实现一次充电后的纯电续驶能力达到60km的话,就必须研制与现在锂电池有所不同的负极材料;锂电池所需的正极材料也需要更加实用化。
一、 高容量的负极材料
在锂电池负极材料开发领域,对于比石墨和碳元素为主的非金属固体材料更具**大比容量的金属负极材料的研究,将再次活跃起来。
较初,金属氧化物或者合金系列的负极材料,应该可以解决金属负极在充电时锂枝晶析出问题。这个课题比石墨和碳元素为主的负极材料出现的更早,在上世纪80年代初就积极地展开了系统研究。
但是,这种金属系的负极材料,在锂嵌入与迁出过程中,体积会变得非常大(图2)。在微粉化过程中,其循环寿命变得非常短。
可是,要实现既定的”先进性电池目标(见附注)”,理所当然地少不了锡、硅金属元素系列的合金型负极材料,这已经被业内有识之士所认知。并且,由于纳米技术及其材料的导入,已经诞生了几个值得业界关注的关于电池**命的成果。比如:锡元素系列的钴、铁金属材料,银及其合金材料,**硅金属元素系列的Si/C复合材料以及薄膜化材料等,都得到了积极应用。
应当特别指出的是,**硅金属系列的负极材料,不仅是金属负极材料中比容量较大的,而且在电极电位中,比石墨碳元素负极材料的电极电位互换性更高,并且因此而受到特别关注。
用溅射法在集流体上直接形成多孔质薄膜电极,不仅解决了电极化的问题,同时还可避免由于体积变化所导致的构造破坏等技术难题。
近几年来,这些成功实例及其报告,已经得到行业的证实。即通过与石墨碳元素负极的复合化,来实现硅金属元素负极材料的实用化。
二、 高容量的正极材料
对于锂电池的正极材料,就缺乏像负极那样具有很大潜力的可替代材料。特别是与石墨碳元素、硅金属元素那些不含锂离子的负极材料相对应,对含有锂化合物为中心的高性能正极材料的研究正在进行中。
但是,与LiCoO2相比较,能够提高比容量的值得期待的材料,现在还没有被发现。
在这里,LiNiO2拥有可逆性较高的锂离子的植入、放出量多的特性,被定位于高能源密度型的正极材料。可是,正如表中所列的那样,解决实用化的课题在目前看来并不容易。
作为比容量较高的化合物,尝试利用拥有层状结晶构造的锰酸盐LiMnO2正极材料。因为单独的LiMnO2元素,是不进行锂的植入放出的非活性化合物,所以需要与活性化合物LiMO2(M=Ni,Co,Mn)或者非活性化合物LiFeO2结合而形成的固液体,使锂的植入放出具有活性,并以呈现出250~300mAh/g的高容量而受到关注。
三、 聚阴离子正极材料
近几年,除了氧化物以外,也在尝试着对拥有高能量密度型的正极材料————磷酸盐或者硅酸盐正极材料的研发,被统称为聚阴离子系列正极材料。
在磷酸盐材料中,有橄榄石结构的LiFePO4已经进入实际应用阶段。但是,由于LiFePO4的放电电位只能达到约3.4V的低值,加上已经实现了接近理论值(170mAh/g)的容量,在提高能里量密度方面已经不值得期待。
同样,橄榄石型正极当中(图3),取代铁、锰、镍的聚阴离子层状正极材料LiMnPO4或者LiNiPO4的理论容量虽然没有变化,但是平均放电电压可以达到4.0V~4.8V的高值。与LiFePO4相比,大约能提高20%~50%的能量密度,而受到关注与期待,各方面的力量正在积极进行相关研究。
但是,由于LiMnPO4的电导率非常低,尚不具备像LiNiPO4那样能在高电极电位中稳定活动的**电解液,故作为车载电池的实用化还有很多问题要解决。
其他化合物中的Li2MnO3也是一样。对于金属元素,由2个锂构成的硅酸盐系列(Li2MSiO4)或者LiMPO4F系列等,如果能够实现所拥有锂的脱离和植入,所具有的330mAh/g、290mAh/g的理论容量是值得研究和期待的。
目前,各种各样的研讨都在进行中。关键是,关于金属元素中1个锂的可逆性,即:脱离、植入是值得期待和今后亟待解决的技术难题。
四、先进型锂电池的耐用性课题
综上所述,不管是正极材料还是负极材料,如果能够使现有锂离子电池实现**大容量,即:能量密度达到200Wh/kg的话,就将是一个令人瞩目的技术进步。
可是,由于能够提高锂电池能量的元素循环寿命短,甚至在小型民用领域的应用尚未成熟。而车载电池的性能要求又是小型民用电池的3~5倍以上,并且其耐用性要求大约为10年。显然,这个使用寿命同样是一个难以逾越的技术障碍。